Operations Managemen

EIGHITH EDITION

William J. Stevenson

OUD ROM

Scheduling

Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 *by The McGraw-Hill Companies, Inc. All rights reserved.*

McGraw-Hill/Irwin

Scheduling

- Scheduling: Establishing the timing of the use of equipment, facilities and human activities in an organization
- Effective scheduling can yield
 - Cost savings

Scheduling

Increases in productivity

Scheduling Manufacturing Operations

High-volume Intermediatevolume Low-volume Service operations

High-Volume Success Factors

- Process and product design
- Preventive maintenance

- Rapid repair when breakdown occurs
- Optimal product mixes
- Minimization of quality problems
- Reliability and timing of supplies

Intermediate-Volume Systems

- Outputs are between standardized highvolume systems and made-to-order job shops
 - Run size, timing, and sequence of jobs
- Economic run size:

$$Q_0 = \sqrt{\frac{2DS}{H}} \sqrt{\frac{p}{p-u}}$$

Scheduling Low-Volume Systems

- <u>Loading</u> assignment of jobs to process centers
- <u>Sequencing</u> determining the order in which jobs will be processed
- Job-shop scheduling

Scheduling

Scheduling for low-volume systems with many variations in requirements

Gantt Load Chart

Figure 15.2

Scheduling

 Gantt chart - used as a visual aid for loading and scheduling

Work	Mon.	Tues.	Wed	. Thurs.	Fri.
Center					
1	Job 3			Job 4	\triangleright
2		Job 3	Job	7	
3	Job 1			Job 6	Job 7
4	Job 10				

Loading

Infinite loading

- Finite loading
- Vertical loading
- Horizontal loading
- Forward scheduling
- Backward scheduling
- Schedule chart

Sequencing

- <u>Sequencing</u>: Determine the order in which jobs at a work center will be processed.
- *Workstation*: An area where one person works, usually with special equipment, on a specialized job.

Priority Rules

Table 15.2

- FCFS first come, first served
- SPT shortest processing time
- EDD earliest due date
- CR critical ratio
- S/O slack per operation
- Rush emergency

Scheduling Example 2 Table 15.4 Average Number of Average Average Flow Time Tardiness Jobs at the (days) (days) Rule Work Center FCFS 20.00 9.00 2.93 SPT 18.00 6.67 2.63 EDD 6.33 18.33 2.68 CR 22.17 9.67 3.24

Scheduling Difficulties

Variability in

- Setup times
- Processing times
- Interruptions
- Changes in the set of jobs
- No method for identifying optimal schedule
- Scheduling is not an exact science
- Ongoing task for a manager

Minimizing Scheduling Difficulties

• Set realistic due dates

- Focus on bottleneck operations
- Consider lot splitting of large jobs

Scheduling Service Operations

Appointment systems

- Controls customer arrivals for service
- Reservation systems
 - Estimates demand for service
- Scheduling the workforce
 - Manages capacity for service
- Scheduling multiple resources
 - Coordinates use of more than one resource

Cyclical Scheduling

- Hospitals, police/fire departments, restaurants, supermarkets
- Rotating schedules

- Set a scheduling horizon
- Identify the work pattern
- Develop a basic employee schedule
- Assign employees to the schedule

Service Operation Problems

- Cannot store or inventory services
- Customer service requests are random
- Scheduling service involves
 - Customers

- Workforce
- Equipment

Chapter 2

Aggregate Planning

PEARSON Prentice Hall PowerPoint presentation to accompany Heizer/Render Principles of Operations Management, 7e Operations Management, 9e

Outline – Continued

Methods for Aggregate Planning

Graphical Methods

- ☑ Mathematical Approaches
- Comparison of Aggregate Planning Methods

Scheduling **Outline – Continued** ☑ Aggregate Planning in Services ✓ Restaurants **Hospitals** ☑ National Chains of Small Service Firms Miscellaneous Services ☑ Airline Industry ✓ Yield Management

Learning Objectives

When you complete this chapter you should be able to:

- 1. Define aggregate planning
- 2. Identify optional strategies for developing an aggregate plan
- 3. Prepare a graphical aggregate plan

Learning Objectives

When you complete this chapter you should be able to:

- 4. Solve an aggregate plan via the transportation method of linear programming
- 5. Understand and solve a yield management problem

Anheuser-Busch

Brew Nettle Process

- Anheuser-Busch produces nearly 40% of the beer consumed in the U.S.
- Matches fluctuating demand by brand to plant, labor, and inventory capacity to achieve high facility utilization

High facility utilization requires

- Meticulous cleaning between batches
- ☑ Effective maintenance
- Efficient employee and facility scheduling

Anheuser-Busch

- Product-focused facility with high fixed costs
- High utilization requires effective aggregate planning of the four basic stages of production
 - ☑ Selection and delivery of raw materials
 - ☑ Brewing process from milling to aging
 - ☑ Packaging
 - ☑ Distribution

Aggregate Planning

Determine the quantity and timing of production for the immediate future

- ☑ Objective is to minimize cost over the planning period by adjusting
 - ☑ Production rates
 - ☑ Labor levels
 - ☑ Inventory levels
 - Ø Overtime work
 - ☑ Subcontracting rates
 - ☑ Other controllable variables

15-29 Scheduling

Aggregate Planning

Required for aggregate planning

- ☑ A logical overall unit for measuring sales and output
- ☑ A forecast of demand for an intermediate planning period in these aggregate terms
- ☑ A method for determining costs
- A model that combines forecasts and costs so that scheduling decisions can be made for the planning period

5-31 Scheduling

Aggregate Planning

140,000

	Quarter 1	
Jan	Feb	Mar
150,000	120,000	110,000
	Quarter 2	
Apr	May	Jun
100,000	130,000	150,000
	Quarter 3	
Jul	Aua	Sep

150,000

180,000

15-33 Scheduling

Aggregate Planning

- Combines appropriate resources into general terms
- Part of a larger production planning system
- ☑ Disaggregation breaks the plan down into greater detail
- Disaggregation results in a master production schedule

Aggregate Planning Strategies

- 1. Use inventories to absorb changes in demand
- 2. Accommodate changes by varying workforce size

- 3. Use part-timers, overtime, or idle time to absorb changes
- 4. Use subcontractors and maintain a stable workforce
- Change prices or other factors to influence demand

☑ Changing inventory levels

- ☑ Increase inventory in low demand periods to meet high demand in the future
- Increases costs associated with storage, insurance, handling, obsolescence, and capital investment 15% to 40%
- Shortages can mean lost sales due to long lead times and poor customer service

Capacity Options

- Varying workforce size by hiring or layoffs
 - ☑ Match production rate to demand
 - ☑ Training and separation costs for hiring and laying off workers
 - New workers may have lower productivity
 - ✓ Laying off workers may lower morale and productivity

Capacity Options

- ✓ Varying production rate through overtime or idle time
 - ☑ Allows constant workforce
 - ☑ May be difficult to meet large increases in demand
 - ☑ Overtime can be costly and may drive down productivity
 - ☑ Absorbing idle time may be difficult

Capacity Options

- ✓ Subcontracting
 - ☑ Temporary measure during periods of peak demand
 - ☑ May be costly
 - ☑ Assuring quality and timely delivery may be difficult
 - Exposes your customers to a possible competitor

Capacity Options

✓ Using part-time workers

☑ Useful for filling unskilled or low skilled positions, especially in services

5-40 Scheduling

Demand Options

☑ Influencing demand

☑ Use advertising or promotion to increase demand in low periods

Attempt to shift demand to slow periods

 May not be sufficient to balance demand and capacity

Demand Options

- Back ordering during high- demand periods
 - Requires customers to wait for an order without loss of goodwill or the order
 - ☑ Most effective when there are few if any substitutes for the product or service
 - ☑ Often results in lost sales

Demand Options

- Counterseasonal product and service mixing
 - ☑ Develop a product mix of counterseasonal items
 - ☑ May lead to products or services outside the company's areas of expertise

Option Advantages		Disadvantages	Some Comments	
Changing inventory levels	Changes in human resources are gradual or none; no abrupt production changes.	Inventory holding cost may increase. Shortages may result in lost sales.	Applies mainly to production, not service, operations.	
Varying workforce size by hiring or layoffs	Avoids the costs of other alternatives.	<i>Hiring, layoff, and training costs may be significant.</i>	Used where size of labor pool is large.	

Option	Advantages	Disadvantages	Some Comments	
Varying production rates through overtime or idle time	Matches seasonal fluctuations without hiring/ training costs.	Overtime premiums; tired workers; may not meet demand.	Allows flexibility within the aggregate plan.	
Sub- contracting	Permits flexibility and smoothing of the firm's output.	Loss of quality control; reduced profits; loss of future business.	Applies mainly in production settings.	

Option Advantages		Disadvantages	Some Comments	
Using part- time workers	<i>Is less costly and more flexible than full-time workers.</i>	High turnover/ training costs; quality suffers; scheduling difficult.	Good for unskilled jobs in areas with large temporary labor pools.	
Influencing Tries to use demand excess capacity. Discounts dr new custome		Uncertainty in demand. Hard to match demand to supply exactly.	Creates marketing ideas. Overbooking used in some businesses.	

Option	Advantages	Disadvantages	Some Comments
Back ordering during high- demand periods	May avoid overtime. Keeps capacity constant.	Customer must be willing to wait, but goodwill is lost.	Many companies back order.
Counter- seasonal product and service mixing	Fully utilizes resources; allows stable workforce.	May require skills or equipment outside the firm's areas of expertise.	Risky finding products or services with opposite demand patterns.

Methods for Aggregate Planning

- ☑ A mixed strategy may be the best way to achieve minimum costs
- ☑ There are many possible mixed strategies
- Finding the optimal plan is not always possible

☑ Chase strategy

Scheduling

- ☑ Match output rates to demand forecast for each period
- ☑ Vary workforce levels or vary production rate
- Favored by many service organizations

5-49 Scheduling

Mixing Options to Develop a Plan

☑ Level strategy

- ☑ Daily production is uniform
- ☑ Use inventory or idle time as buffer
- ☑ Stable production leads to better quality and productivity
- Some combination of capacity options, a mixed strategy, might be the best solution

Graphical Methods

1. Determine the demand for each period

Scheduling

- 2. Determine the capacity for regular time, overtime, and subcontracting each period
- 3. Find labor costs, hiring and layoff costs, and inventory holding costs
- 4. Consider company policy on workers and stock levels
- 5. Develop alternative plans and examine their total costs

Month	Expected Demand	Production Days	Demand Per Day (computed)
Jan	900	22	41
Feb	700	18	39
Mar	800	21	38
Apr	1,200	21	57
Мау	1,500	22	68
June	<u>1,100</u>	<u>20</u>	55
	6,200	124	

Average	_	Total expected demand	
requirement	_	Number of production days	
	= -	6,200 124 = 50 units per day	

Cost Information

Inventory carrying cost

Subcontracting cost per unit

Average pay rate

Overtime pay rate

Labor-hours to produce a unit

Cost of increasing daily production rate (hiring and training)

Cost of decreasing daily production rate (layoffs) Plan 1 – constant workforce

- \$ 5 per unit per month
- \$10 per unit
- \$ 5 per hour (\$40 per day)
- \$7 per hour (above 8 hours per day)
- 1.6 hours per unit
- \$300 per unit

5-55 Scheduling

Roofing Supplier Example 2

Month	<i>Production at 50 Units per Day</i>	Demand Forecast	Monthly Inventory Change	Ending Inventory
Jan	1,100	900	+200	200
Feb	900	700	+200	400
Mar	1,050	800	+250	650
Apr	1,050	1,200	-150	500
Мау	1,100	1,500	-400	100
June	1,000	1,100	-100	0
				1,850
Тс	otal units of inventory	carried over	r from one	

- month to the next = 1,850 units
- Workforce required to produce 50 units per day = 10 workers

-56 Scheduling

Costs		Calculations
Inventory carrying	\$9,250	(= 1,850 units carried x \$5 per unit)
Regular-time labor	49,600	(= 10 workers x \$40 per day x 124 days)
Other costs (overtime, hiring, layoffs, subcontracting)	0	· ·
Total cost	\$58,850	-
Total units of invor	tory carried	over from one
Total units of inver	mory carried mo	$rac{1}{1000}$ nth to the next = 1,850 units

Workforce required to produce 50 units per day = 10 workers

Figure 13.4

Scheduling

Month	Expected Demand	Production Days	Demand Per Day (computed)
Jan	900	22	41
Feb	70 <mark>0</mark>	18	39
Mar	800	21	38
Apr	1,200	21	57
Мау	1,500	22	68
June	<u>1,100</u>	<u>20</u>	55
	6,200	124	
Plan 2	 subcontracting 		Table 13.2
Min	imum requirement = 38 (units per day	

Cost Information

Inventory carrying cost Subcontracting cost per unit

Average pay rate

Overtime pay rate

Labor-hours to produce a unit

Cost of increasing daily production rate (hiring and training)

Cost of decreasing daily production rate \$600 per unit (layoffs)

\$ 5 per unit per month
\$10 per unit
\$ 5 per hour (\$40 per day)
\$ 7 per hour (above 8 hours per day)
1.6 hours per unit
\$300 per unit

Cost Information

\$ 5 per unit per month Inventory carry cost Subcontracting cost per unit \$10 per unit \$ 5 per hour (\$40 per day) Average pay rate \$7 per hour **Overtime pay rate** (above 8 hours per day) 1.6 hours per unit Labor-hours to produce a unit Cost of increasing daily production rate \$300 per unit (hiring and training) Cost of decreasing daily production rate \$600 per unit (layoffs)

5-62 Scheduling		
Roofing S	Supplie	r Example 3
In-house produ	uction = =	38 units per day x 124 days 4,712 units
Costs		Calculations
Regular-time labor	\$37,696	(= 7.6 workers x \$40 per day x 124 days)
Subcontracting	14,880	(= 1,488 <i>units</i> x \$10 <i>per</i> <i>unit</i>)
Total cost	\$52,576	-
Total cost	\$52,576	-

Month	Expected Demand	Production Days	Demand Per Day (computed)
Jan	900	22	41
Feb	70 <mark>0</mark>	18	39
Mar	800	21	38
Apr	1,200	21	57
Мау	1,500	22	68
June	<u>1,100</u>	<u>20</u>	55
	6,200	124	
Plan 3 -	hiring and firing		Table 13.2
	Production = Expected	d Demand	

Cost Information

Inventory carrying cost Subcontracting cost per unit

Average pay rate

Overtime pay rate

Labor-hours to produce a unit

Cost of increasing daily production rate (hiring and training)

Cost of decreasing daily production rate (layoffs)

\$ 5 per unit per month
\$10 per unit
\$ 5 per hour (\$40 per day)
\$ 7 per hour (above 8 hours per day)
1.6 hours per unit
\$300 per unit

\$600 per unit

15-66 Scheduling

Roofing Supplier Example 4

Month	Forecast (units)	Daily Prod Rate	Basic Production Cost (demand x 1.6 hrs/unit x \$5/hr)	Extra Cost of Increasing Production (hiring cost)	Extra Cost of Decreasing Production (layoff cost)	Total Cost
Jan	900	41	\$ 7,200	—	—	\$ 7,200
- Feb	700	39	5,600	—	\$1,200 (= 2 x \$600)	6,800
Mar	800	38	6,400	—	\$600 (= 1 x \$600)	7,000
Apr	1,200	57	9,600	\$5,700 (= 19 x \$300)	—	15,300
May	1,500	68	12,000	\$3,300 (= 11 x \$300)	—	15,300
June	1,100	55	8,800	—	\$7,800 (= 13 x \$600)	16,600
			\$49,600	\$9,000	\$9,600	\$68,200

Comparison of Three Plans

Plan 1	Plan 2	Plan 3	
\$ 9,250	\$ 0	\$ 0	
49,600	37,696	49,600	
0	0	0	
0	0	9,000	
0	0	9,600	
0	14.880	0	
\$58,850	\$52,576	<mark>\$68,200</mark>	
	Plan 1 \$ 9,250 49,600 0 0 0 0 0 \$58,850	Plan 1 Plan 2 \$ 9,250 \$ 0 49,600 37,696 0 0 0 0 0 0 0 0 14.880 \$58,850	

Plan 2 is the lowest cost option

Transportation Method

	Sa		
	Mar	Apr	May
Demand	800	1,000	750
Capacity:			
Regular	700	700	700
Overtime	50	50	50
Subcontracting	150	150	130
Beginning inventory	100		
	tire	es	
	Costs		
Regular time	\$40 per tire		
Overtime	\$50 per tire		
Subcontracting	\$70 per tire		
Carrying	\$ 2 per tire p	per month	

5-70 Scheduling

Transportation Example

Important points

- 1. Carrying costs are \$2/tire/month. If goods are made in one period and held over to the next, holding costs are incurred
- 2. Supply must equal demand, so a dummy column called "unused capacity" is added
- 3. Because back ordering is not viable in this example, cells that might be used to satisfy earlier demand are not available

Transportation Example

Important points

Scheduling

- 4. Quantities in each column designate the levels of inventory needed to meet demand requirements
- In general, production should be allocated to the lowest cost cell available without exceeding unused capacity in the row or demand in the column

15-72 Scheduling						\backslash
			DEMAND FOR			
Trans	D SUPPLY FROM	Period 1 (Mar.)	Period 2 (Apr.)	Period 3 (May)	Unused Capacity (dummy)	TOTAL CAPACITY AVAILABLE (supply)
Evan	r	0	2	4	0	
	Beginning inventory	100				100
	P	40	42	44	0	1000
	e Regular time	700				700
	i	50	52	54	0	- C334
	d^{O} Overtime	4	50			50
	1	70	72	74	0	
	¹ Subcontract		150			150
	р		40	42	0	
	e Regular time	×	700	25		700
			50	52	0	
	$\frac{O}{d}$ Overtime	×	50			50
		19 - 20 20	70	72	0	2
	² Subcontract	×	50		100	150
	р			40	0	
	e Regular time	×	×	700		700
	r r r r r r r r r r			50	0	
	0 1 Overtime	×	×	50		50
	a			70	0	
	³ Subcontract	×	×		130	130
Table 13.7	TOTAL DEMAND	800	1,000	750	230	2,780

Management Coefficients Model

- ☑ Builds a model based on manager's experience and performance
- A regression model is constructed to define the relationships between decision variables
- Objective is to remove inconsistencies in decision making

Other Models

Linear Decision Rule

- ☑ Minimizes costs using quadratic cost curves
- ☑ Operates over a particular time period

Simulation

- ☑ Uses a search procedure to try different combinations of variables
- Develops feasible but not necessarily optimal solutions

Summary of Aggregate Planning Methods

Techniques	Solution Approaches	Important Aspects
Graphical methods	Trial and error	Simple to understand and easy to use. Many solutions; one chosen may not be optimal.
Transportation method of linear programming	Optimization	LP software available; permits sensitivity analysis and new constraints; linear functions may not be realistic.

Summary of Aggregate Planning Methods

Scheduling

-76

Techniques	Solution Approaches	Important Aspects
Management coefficients model	Heuristic	Simple, easy to implement; tries to mimic manager's decision process; uses regression.
Simulation	Change parameters	Complex; may be difficult to build and for managers to understand.

Aggregate Planning in Services

Controlling the cost of labor is critical

- 1. Accurate scheduling of labor-hours to assure quick response to customer demand
- 2. An on-call labor resource to cover unexpected demand
- 3. Flexibility of individual worker skills
- Flexibility in rate of output or hours of work

☑ Restaurants

- ☑ Smoothing the production process
- Determining the optimal workforce size

Hospitals

Responding to patient demand

Law Firm Example

	Labo	Labor-Hours Required			Capacity Constraints	
	(2)	(3)	(4)	(5)	(6)	
(1)		Forecasts		Maximum	Number of	
Category of	Best	Likely	Worst	Demand in	Qualified	
Legal Business	(hours)	(hours)	(hours)	People	Personnel	
Trial work	1,800	1,500	1,200	3.6	4	
Legal research	4,500	4,000	3,500	9.0	32	
Corporate law	8,000	7,000	6,500	16.0	15	
Real estate law	1,700	1,500	1,300	3.4	6	
Criminal law	3,500	3,000	2,500	7.0	12	
Total hours	19,500	17,000	15,000			
Lawyers needed	39	34	30			

Table 13.9

Allocating resources to customers at prices that will maximize yield or revenue

- 1. Service or product can be sold in advance of consumption
- 2. Demand fluctuates

- 3. Capacity is relatively fixed
- 4. Demand can be segmented
- Variable costs are low and fixed costs are high

Yield Management Matrix

		Price		
		Tend to be fixed	Tend to be variable	
(I)		Quadrant 1:	Quadrant 2:	
use [:]	Predictable	Movies Stadiums/arenas Convention centers Hotel meeting space	Hotels Airlines Rental cars Cruise lines	
on of				
Irati	ole	Quadrant 3:	Quadrant 4:	
Du Unpredictat	Unpredictal	Restaurants Golf courses Internet service providers	Continuing care hospitals	

Figure 13.7

Making Yield Management Work

- 1. Multiple pricing structures must be feasible and appear logical to the customer
- 2. Forecasts of the use and duration of use
- 3. Changes in demand

Capacity Planning For Products and Services

Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved.

Capacity Planning

- Capacity is the upper limit or ceiling on the load that an operating unit can handle.
- The basic questions in capacity handling are:
 - What kind of capacity is needed?
 - How much is needed?
 - When is it needed?

Importance of Capacity Decisions

- 1. Impacts ability to meet future demands
- 2. Affects operating costs

- 3. Major determinant of initial costs
- 4. Involves long-term commitment
- 5. Affects competitiveness
- 6. Affects ease of management
- 7. Globalization adds complexity
- 8. Impacts long range planning

Capacity

Design capacity

- maximum output rate or service capacity an operation, process, or facility is designed for
- Effective capacity
 - Design capacity minus allowances such as personal time, maintenance, and scrap
- Actual output
 - rate of output actually achieved--cannot exceed effective capacity.

Efficiency/Utilization Example

Design capacity = 50 trucks/day Effective capacity = 40 trucks/day Actual output = 36 units/day

Efficiency =	Actual output Effective capacity	= _	36 units/day 40 units/ day	= 90%
Utilization =	Actual output Design capacity	=	36 units/day 50 units/day	= 72%

Determinants of Effective Capacity

Facilities

- Product and service factors
- Process factors
- Human factors
- Operational factors
- Supply chain factors
- External factors

Strategy Formulation

- Capacity strategy for long-term demand
- Demand patterns
- Growth rate and variability
- Facilities

- Cost of building and operating
- Technological changes
 - Rate and direction of technology changes
- Behavior of competitors
- Availability of capital and other inputs

Key Decisions of Capacity Planning

- 1. Amount of capacity needed
- 2. Timing of changes

Scheduling

- 3. Need to maintain balance
- 4. Extent of flexibility of facilities

Capacity cushion – extra demand intended to offset uncertainty

Steps for Capacity Planning

- 1. Estimate future capacity requirements
- 2. Evaluate existing capacity
- 3. Identify alternatives

- 4. Conduct financial analysis
- 5. Assess key qualitative issues
- 6. Select one alternative
- 7. Implement alternative chosen
- 8. Monitor results

Make or Buy

- 1. Available capacity
- 2. Expertise
- 3. Quality considerations
- 4. Nature of demand
- 5. Cost

Scheduling

6. Risk

Developing Capacity Alternatives

1. Design flexibility into systems

- 2. Take stage of life cycle into account
- 3. Take a "big picture" approach to capacity changes
- 4. Prepare to deal with capacity "chunks"
- 5. Attempt to smooth out capacity requirements6. Identify the optimal operating level

Economies of Scale

• Economies of scale

- If the output rate is less than the optimal level, increasing output rate results in decreasing average unit costs
- Diseconomies of scale
 - If the output rate is more than the optimal level, increasing the output rate results in increasing average unit costs

Evaluating Alternatives

Figure 5.4

-101 Scheduling

Minimum cost & optimal operating rate are functions of size of production unit.

Planning Service Capacity

• Need to be near customers

- Capacity and location are closely tied
- Inability to store services
 - Capacity must be matched with timing of demand
- Degree of volatility of demand
 - Peak demand periods

Assumptions of Cost-Volume Analysis

- 1. One product is involved
- 2. Everything produced can be sold
- 3. Variable cost per unit is the same regardless of volume
- 4. Fixed costs do not change with volume
- 5. Revenue per unit constant with volume
- 6. Revenue per unit exceeds variable cost per unit

Financial Analysis

- Cash Flow the difference between cash received from sales and other sources, and cash outflow for labor, material, overhead, and taxes.
- Present Value the sum, in current value, of all future cash flows of an investment proposal.

Calculating Processing Requirements

Product	Annual Demand	Standard processing time per unit (hr.)	Processing time needed (hr.)
#1	400	5.0	2,000
#2	300	8.0	2,400
#3	700	2.0	<u>1,400</u> 5,800

Quality Control

Phases of Quality Assurance

Figure 10.1

110 Scheduling

The least progressive

The most progressive

Inspection

Figure 10.2

- How Much/How Often
- Where/When
- Centralized vs. On-site

Optimal Amount of Inspection

Where to Inspect in the Process

- Raw materials and purchased parts
- Finished products

- Before a costly operation
- Before an irreversible process
- Before a covering process

Examples of Inspection Points

Table 10.1

Type of business	Inspection points	Characteristics
Fast Food	Cashier Counter area Eating area Building Kitchen	Accuracy Appearance, productivity Cleanliness Appearance Health regulations
Hotel/motel	Parking lot Accounting Building Main desk	Safe, well lighted Accuracy, timeliness Appearance, safety Waiting times
Supermarket	Cashiers Deliveries	Accuracy, courtesy Quality, quantity

 <u>Quality of Conformance:</u> A product or service conforms to specifications

Control Chart

Control Chart

- <u>*Purpose:*</u> to monitor process output to see if it is random
- A time ordered plot representative sample statistics obtained from an on going process (e.g. sample means)
- Upper and lower control limits define the range of acceptable variation

Sample number

• The essence of statistical process control is to assure that the output of a process is random so that *future output* will be random.

5-119 Scheduling

Statistical Process Control

- The Control Process
 - Define
 - Measure
 - Compare
 - Evaluate
 - Correct
 - Monitor results

Statistical Process Control

Variations and Control

- <u>Random variation</u>: Natural variations in the output of a process, created by countless minor factors
- <u>Assignable variation</u>: A variation whose source can be identified

Control Charts for Variables

Variables generate data that are *measured*.

Mean control charts

- Used to monitor the central tendency of a process.
- X bar charts
- Range control charts
 - Used to monitor the process dispersion
 - R charts

Control Chart for Attributes

27 Scheduling

- p-Chart Control chart used to monitor the proportion of defectives in a process
- c-Chart Control chart used to monitor the number of defects per unit

Attributes generate data that are <u>counted</u>.

Use of p-Charts

Table 10.3

- When observations can be placed into two categories.
 - Good or bad
 - Pass or fail
 - Operate or don't operate
- When the data consists of multiple samples of several observations each

Use of c-Charts

Table 10.3

- Use only when the number of occurrences per unit of measure can be counted; nonoccurrences cannot be counted.
 - Scratches, chips, dents, or errors per item
 - Cracks or faults per unit of distance
 - Breaks or Tears per unit of area
 - Bacteria or pollutants per unit of volume
 - Calls, complaints, failures per unit of time

Use of Control Charts

- At what point in the process to use control charts
- What size samples to take
- What type of control chart to use
 - Variables

130 Scheduling

Attributes

Process Capability

- Tolerances or specifications
 - Range of acceptable values established by engineering design or customer requirements
- Process variability

- Natural variability in a process
- Process capability
 - Process variability relative to specification

3 Sigma and 6 Sigma Quality

5-135 Scheduling

Improving Process Capability

- Simplify
- Standardize
- Mistake-proof
- Upgrade equipment
- Automate

Limitations of Capability Indexes

1. Process may not be stable

- 2. Process output may not be normally distributed
- 3. Process not centered but C_p is used

Additional PowerPoint slides contributed by Geoff Willis, University of Central Oklahoma.

Control Charts in General

- Are named according to the statistics being plotted, i.e., X bar, R, p, and c
- Have a center line that is the overall average
- Have limits above and below the center line at ± 3 standard deviations (usually)

Variables Data Charts

- Process Centering
 - X bar chart

39 Scheduling

• X bar is a sample mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

- Process Dispersion (consistency)
 - R chart
 - R is a sample range

 $R = \max(X_i) - \min(X_i)$

X bar charts

- Center line is the grand mean (X double bar)
- Points are X bars

140 Scheduling

$$\sigma_{\overline{x}} = \sigma / \sqrt{n}$$

$$=\frac{\sum_{j=1}^{m}\overline{X_{j}}}{m}$$

X

 $UCL = X + z\sigma_{\overline{x}} \qquad LCL = X - z\sigma_{\overline{x}}$

-OR-

 $UCL = \overline{X} + A_2 \overline{R} \qquad LCL = \overline{X} - A_2 \overline{R}$

$$UCL = D_4 \overline{R} \qquad \qquad LCL = D_3 R$$

Use of X bar & R charts

• Charts are always used in tandem

- Data are collected (20-25 samples)
- Sample statistics are computed
- All data are plotted on the 2 charts
- Charts are examined for randomness
- If random, then limits are used "forever"

Process Capability

145 Scheduling

The ratio of process variability to design specifications

Chapter 5 MRP and ERP

5-147 Scheduling

MRP

 Material requirements planning (MRP): Computer-based information system that translates master schedule requirements for end items into time-phased requirements for subassemblies, components, and raw materials.

Dependent demand is certain.

Dependant Demand

• <u>Dependent demand</u>: Demand for items that are subassemblies or component parts to be used in production of finished goods.

49 Scheduling

• Once the independent demand is known, the dependent demand can be determined.

MPR Inputs

Master Production Schedule

- Time-phased plan specifying timing and quantity of production for each end item.
- Material Requirement Planning Process

Master Schedule

52 Scheduling

Master schedule: One of three primary inputs in MRP; states which end items are to be produced, when these are needed, and in what quantities.

Cumulative lead time: The sum of the lead times that sequential phases of a process require, from ordering of parts or raw materials to completion of final assembly.

Bill-of-Materials

54 Scheduling

<u>Bill of materials (BOM)</u>: One of the three primary inputs of MRP; a listing of all of the raw materials, parts, subassemblies, and assemblies needed to produce one unit of a product.

Product structure tree: Visual depiction of the requirements in a bill of materials, where all components are listed by levels.

Inventory Records

- One of the three primary inputs in MRP
- Includes information on the status of each item by time period
 - Gross requirements
 - Scheduled receipts
 - Amount on hand
 - Lead times
 - Lot sizes

56 Scheduling

• And more ...

Assembly Time Chart

5-157 Scheduling

MRP Processing

- Gross requirements
- Schedule receipts

- Projected on hand
- Net requirements
- Planned-order receipts
- Planned-order releases

MPR Processing

Gross requirements

- Total expected demand
- Scheduled receipts
 - Open orders scheduled to arrive
- Planned on hand
 - Expected inventory on hand at the beginning of each time period

MPR Processing

• Net requirements

- Actual amount needed in each time period
- Planned-order receipts
 - Quantity expected to received at the beginning of the period
 - Offset by lead time
- Planned-order releases
 - Planned amount to order in each time period

Updating the System

• Regenerative system

- Updates MRP records periodically
- Net-change system
 - Updates MPR records continuously

MRP Outputs

• Planned orders - schedule indicating the amount and timing of future orders.

- Order releases Authorization for the execution of planned orders.
- Changes revisions of due dates or order quantities, or cancellations of orders.

MRP Secondary Reports

- Performance-control reports
- Planning reports
- Exception reports

MRP in Services

• Food catering service

- End item => catered food
- Dependent demand => ingredients for each recipe, i.e. bill of materials
- Hotel renovation
 - Activities and materials "exploded" into component parts for cost estimation and scheduling

Benefits of MRP

• Low levels of in-process inventories

- Ability to track material requirements
- Ability to evaluate capacity requirements
- Means of allocating production time

Requirements of MRP

- Computer and necessary software
- Accurate and up-to-date
 - Master schedules

- Bills of materials
- Inventory records
- Integrity of data

5-167 Scheduling

MRP II

- Expanded MRP with emphasis placed on integration
 - Financial planning
 - Marketing
 - Engineering
 - Purchasing
 - Manufacturing

Capacity Planning

<u>Capacity requirements planning</u>: The process of determining short-range capacity requirements.

69 Scheduling

Load reports: Department or work center reports that compare known and expected future capacity requirements with projected capacity availability.

<u>Time fences</u>: Series of time intervals during which order changes are allowed or restricted.

ERP

71 Scheduling

• Enterprise resource planning (ERP):

- Next step in an evolution that began with MPR and evolved into MRPII
- Integration of financial, manufacturing, and human resources on a single computer system.

ERP Strategy Considerations

- High initial cost
- High cost to maintain
- Future upgrades
- Training

15-173 Scheduling

- Another one chapter will be discusses from the reference book.
- We will try to solve numerical problem from the text and reference books.

Thank You